Controlled release properties of Chitosan encapsulated volatile Citronella Oil microcapsules by thermal treatments.

نویسندگان

  • Wen-Chuan Hsieh
  • Chih-Pong Chang
  • Ying-Lin Gao
چکیده

This research uses modified orifice method to prepare the O/W type Chitosan encapsulated volatile Citronella Oil microcapsules. In this article, we investigated the forming condition of microcapsules and the influence to sustained release effect of volatile Citronella Oil by applying thermal pretreatment to microcapsules. The results suggest that the forming of microcapsules should be processed under the fundamental conditions of: (1) the concentration of Chitosan is at least 0.2wt%, (2) NaOH is greater than 0.1wt%, and (3) with the additive of coconut oil as natural surfactant, so that we could obtain final product of microcapsules with better formation and dispersion. The changes in concentration of Chitosan will affect the encapsulation efficiency of the volatile Citronella Oil. When the concentrations of Chitosan are 0.5%, 1.0% and 1.5%, the encapsulation efficiencies are 98.2%, 95.8% and 94.7%, respectively. The particle size of Chitosan microcapsules would decrease as the emulsification stirring speed increases. When the stirring speeds are 400 rpm, 800 rpm, and 1500 rpm, the average particle sizes of microcapsules produced are 225+/-24 microm, 131+/-20 microm, and 11+/-3 microm, respectively. If the microcapsules were thermal pretreated at 80 degrees C, the structure of Chitosan wall membrane would shrink and thus achieve the effect of sustained release. The sustaining effect would increase along with treatment time increases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Influence of 1-Butanol and Trisodium Citrate Ion on Morphology and Chemical Properties of Chitosan-Based Microcapsules during Rigidification by Alkali Treatment

Linseed oil which has various biomedical applications was encapsulated by chitosan (Chi)-based microcapsules in the development of a suitable carrier. Oil droplets formed in oil-in-water emulsion using sodium dodecyl sulfate (SDS) as emulsifier was stabilized by Chi, and microcapsules with multilayers were formed by alternate additions of SDS and Chi solutions in an emulsion through electrostat...

متن کامل

Simultaneous optimization of multiple response variables for the gelatin-chitosan microcapsules containing angelica essential oil

Angelica essential oil (AO), a major pharmacologically active component of Angelica sinensis (Oliv.) Diels, possesses hemogenesis, analgesic activities and sedative effect. The application of AO in pharmaceutical systems had been limited because of its low oxidative stability. The AO-loaded gelatin-chitosan microcapsules with prevention from oxidation were developed and optimized using response...

متن کامل

Microencapsulation of Orange Oil by Complex Coacervation and its Release Behavior (REASEARCH NOTE)

Microencapsulation of liquid orange oil as a common flavoring agent in food industries by complex coacervation in a gelatin – gum arabic polymeric wall system was studied. At a fixed ratio of 10% w/v as concentration of the materials used in this study, trend of changes of microencapsulation process variables using different wall polymeric contents along with varying levels of the core to wall ...

متن کامل

Simultaneous optimization of multiple response variables for the gelatin-chitosan microcapsules containing angelica essential oil

Angelica essential oil (AO), a major pharmacologically active component of Angelica sinensis (Oliv.) Diels, possesses hemogenesis, analgesic activities and sedative effect. The application of AO in pharmaceutical systems had been limited because of its low oxidative stability. The AO-loaded gelatin-chitosan microcapsules with prevention from oxidation were developed and optimized using response...

متن کامل

Chitosan-Alginate Microcapsules Provide Gastric Protection and Intestinal Release of ICAM-1-Targeting Nanocarriers, Enabling GI Targeting In Vivo.

When administered intravenously, active targeting of drug nanocarriers (NCs) improves biodistribution and endocytosis. Targeting may also improve oral delivery of NCs to treat gastrointestinal (GI) pathologies or for systemic absoption. However, GI instability of targeting moieties compromises this strategy. We explored whether encapsulation of antibody-coated NCs in microcapsules would protect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Colloids and surfaces. B, Biointerfaces

دوره 53 2  شماره 

صفحات  -

تاریخ انتشار 2006